

INTERNAL

International Chamber of Commerce

33-43 avenue du Président Wilson, 75116 Paris, France

+33 (0) 1 49 53 28 28 | iccwbo.org

ICC Banking Commission

Working group on APIs development Briefing Paper n°1

Subject: Security protocol recommendation for trade finance products APIs

29 August 2023

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Overview
This proposal is created under ICC led Trade Finance APIs discussion forum, on
the technical security aspect for Trade Finance APIs.

It covers the security topic in six (6) parts:

1. Onboarding
2. Authentication
3. Authorization
4. Identity Assertion
5. Customer Consent
6. Payload encryption (API Request/Response)

The intention is to cover how Trade Finance APIs should operate within the Trade
community, rather than generic and pure API security technology.

To describe how API calls run securely within Trade Finance community, the
following terms are used in the proposal:

Entity

This refers to the organization that send/receive Trade Finance APIs, including
FI/Banks, Corporates, FinTechs, and potentially NBFI.

They are generically referred as “entity” in this technical proposal, although
playing different roles in Trade Finance itself.

Platform

This refers to the API gateway included system components in above defined
“entity” organization, for example:

Corporates system often referred as ERP, with its API infrastructure;

FinTech often provide SaaS platform, equipped with API capabilities;

FIs have banking systems, with its API infrastructure.

They are generically referred as “platform” in this proposal that send/receive
Trade Finance APIs.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Customer

This refers to the corporate customer of one or more Entities. This is used in this
document to describe an Entity transacting with another Entity that is acting on-
behalf-of a Customer.

Customer or Customer User

This refers to the corporate customer end user.

Onboarding
There two types of onboarding:

1. Direct Onboarding (B2B)
This is the primary onboarding between two Entities. This can include a
public key exchange and/or a digital certificate request.

2. Indirect Onboarding (B2B2B)
This is the onboarding of a customer (and also an end user of the
customer) that will interact with one Entity (Partner) that will act on-behalf-
of the Customer to another Entity (Bank). The pre-requisite of this
onboarding is still the Direct Onboarding between the two Entities and the
onboarding of the customer to both Entities.

Direct Onboarding

Assume that Entity A wishes to consume Entity B’s (Bank) Trade Finance APIs.

mTLS Onboarding

mTLS Onboarding requires a Certificate Request (CSR; generated from Entity A’s
private key) to be sent to Entity B, who will then issue a Certificate (CRT;
generated from Entity B’s Private Key and Entity B’s Certificate Authority (CA)).

When an mTLS connection is made, both sides present their Certificate during
the handshake and both sides can verify the authenticity of the Certificate, thus
providing Authentication.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Process Flow (mTLS Onboarding)

Process Steps (mTLS Onboarding)

1. Entity A generates a Certificate Request (CSR) using Entity A’s new or
existing RSA Private Key (used for mTLS)

2. Entity A applies to onboard to Entity B (Bank) by providing Entity A’s CSR.
3. Entity B (Bank) generates a Signed Certificate (CRT) using: (i) Entity B’s

(Bank) root or intermediate Certificate Authority (CA); (ii) Entity B’s Private
Key; and (iii) Entity A’s Certificate Request (CSR).

4. Entity B (Bank) passes back the Signed Certificate (CRT)
5. Entity A stores the Signed Certificate (CRT). It is not mandatory to store the

CRT in a Vault.

Key Exchange Onboarding

Key Exchange Onboarding requires both Entities to share their Public Key with
each other so that two-way digital signing and encryption can be performed.

When mTLS isn’t used only Entity B (Bank) presents a Certificate, proving its
authenticity. Therefore in order for Entity A to prove its authenticity, Entity A must
digitally sign a JWT using Entity A’s Private Key. Entity B can then verify the digital
signature using Entity A’s Public Key, thus providing Authentication.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Process Flow (Key Exchange Onboarding)

Process Steps (Key Exchange Onboarding)

1. Entity A generates an RSA Key Pair, storing the Private Key in a secure
Vault.
Optionally an existing RSA Key Pair can be used.

2. Entity A applies to onboard to Entity B (Bank) by providing Entity A’s Public
Key and an alias to uniquely identify the Public Key.

3. Entity B (Bank) stores Entity A’s Public Key.
It is not necessary to store Public Keys in a Vault.

4. Entity B (Bank) passes back Entity B’s (Bank) Public Key.
Optionally a new set of RSA Key Pairs could be generated for each Entity
onboarded.

5. Entity A stores Entity B’s (Bank) Public Key.
It is not necessary to store Public Keys in a Vault.

Key Pair Usage

Encryption/Decryption

A recipient’s Public Key is used to encrypt, so that only the recipient can decrypt
using the recipient’s Private Key. This is primarily used to encrypt the Secret Key
that is used to encrypt the message (and the synchronous response).

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Signing/Verifying

A sender’s Private Key is used to digitally sign, so that the recipient can use the
sender’s Public Key to verify the signature is authentic. This is a form of
Authentication, but also the digital signature verifies that the claims in a JWT are
unaltered in transit.

Indirect Onboarding

Assume that a Customer of Entity CB (Bank) wishes to consume Entity B's (Bank)
services via Entity A. This Customer is already onboarded directly with both Entity
A and Entity B (Bank). Therefore the Indirect Onboarding refers to the registration
with Entity B (Bank) of the relationship between Customer and Entity A. This then
allows Entity A to act on-behalf-of the Customer to Entity B (Bank).

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Customer Onboarding

In order for Entity A to act on-behalf of (OBO) a Customer, Entity B must map
Entity A’s Customer ID to Entity B’s (Bank) internal Customer ID.

Process Flow (Customer Onboarding)

Process Steps (Customer Onboarding)

1. Customer retrieves their Customer ID from Entity A that Entity A uses to
uniquely identify the Customer.

2. Customer registers their relationship with Entity B (Bank) using their
Customer ID from Entity A.

User Onboarding

When certain transactions require multi-factor authentication, the onboarding of
the Customer User is required.

Process Flow (User Onboarding)

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Process Steps (User Onboarding)

1. Customer User retrieves their Customer ID and User ID from Entity A
2. Customer registers themselves with Entity B (Bank) using their Customer ID

and User ID from Entity A, along with other user details such as email,
mobile, etc..

Authentication
Authentication refers to two entities establishing trust to one another to facilitate
the Trade Finance API traffic between them.

Unlike SWIFT, a closed community, where each entity being issued a unique
identifier BIC (and MT798 being the messaging spec), Trade Finance API spec will
be used in an open community, without a unique business entity identifier.

There are two (2) options at which Authentication can occur:

1. Mutual Transport Layer Security (mTLS)
2. Bearer Token (JWT)

It is recommended to use mTLS as it is the most efficient way to authenticate a
client, given that it is embedded into the transport layer. It also means that other
forms of transport (other than HTTPS) will still use the same mTLS handshake at
connection time. Furthermore: HTTP Keep-Alive, or WebSocket (or any other form
of multi-message TLS socket protocol) only requires one authentication process
at connection; subsequent messages can be trusted.

However if an Entity cannot support mTLS, then the fallback is to the Bearer
Token (JWT) as this can be used for both AuthN and AuthZ.

Mutual Transport Layer Security

This is the standard Mutual TLS approach as described in the OAuth 2.0
standards (RFC 8705). mTLS makes use of industry standard X.509 Certificates
for establishing trust and a secure (encrypted) channel between two Entities.

Regular TLS is widely used by websites that have the HTTPS protocol, however
there is only a Server Certificate in this scenario. In other words, only Entity A can
trust Entity B; Entity B has no way of identifying Entity A.

As part of the mTLS socket connection between client and server, both sides must
present a valid Certificate that the counter-party can verify the certificate came
from a trusted Certificate Authority.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Unlike key pairs, where public keys need to be exchanged between both parties
to aid in mutual identity, certificates don’t require any repository on the recipient
(Entity B) side, because the certificate can be verified against the signing
certificate. It also makes maintenance very straightforward as an expired
certificate can be swapped for the new one at any time by the client without any
synchronised maintenance on both sides.

Process Flow (mTLS)

Process Steps (mTLS)

1. Entity A initiates a socket connection to Entity B (Bank)
2. Entity B requests the socket be mutually secure and sends their Server

Certificate and requests the Client’s Certificate
3. Entity A verifies Entity B’s (Bank) certificate
4. Entity A sends their Client Certificate to Entity B (Bank)
5. Entity B verifies Entity A’s certificate
6. Entity B (Bank) asserts the certificate into the Servlet Attribute so that its

principal (Entity A’s identity) can be extracted by an API service and
entitlements enforced.

7. (not shown) Symmetric Key is calculated on both sides in order to send
encrypted traffic back and forth.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Bearer Token

This is the standard Private Key JWT approach as described in the OAuth 2.0
standards (RFC 7521). A Bearer Token is typically a JSON Web Token (JWT) that is
sent over a secure channel as part of the request’s header. For an HTTPS request,
this is the “Authorization” HTTP Header. A JWT is a digitally signed message using
an RSA private key. The associated RSA public key can then be used to verify the
digital signature to ensure the contents of the message can be trusted and has
not been tampered with.

As part of the direct onboarding process, these RSA public keys are exchanged.
Typically they are exchanged as part of a key ring, rather than the public key
itself. A key ring is a set of public keys that are indexed by an alias. The alias can
be specified in the Key Identifier (“kid”) JWT header claim. That way the recipient
can resolve which public key to use in the key ring. This is useful when
transitioning between old and new keys.

Process Flow (JWT Bearer Token)

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Process Steps (JWT Bearer Token)

1. Entity A builds a JWT and specifies the alias of the RSA key in the “kid”
Header Claim. The JWT is digitally signed by the RSA private key.

2. Entity A sends a request to Entity B (Bank) with the JWT added as a Bearer
Token in the message header. For HTTP, this is in the “Authentication”
HTTP Header.

3. Entity B (Bank) will resolve the key ring for Entity A using the Subject Claim
(“sub”) in the JWT body.

4. Entity B (Bank) will resolve the RSA Public key from Entity A’s key ring using
the Key Identifier Claim (“kid”) in the JWT header.

5. Entity B (Bank) will verify the digital signature of the JWT using the RSA
Public Key.

6. Entity B (Bank) asserts the JWT claims into the Servlet Attribute so that
identity and other preferences can be extracted by an API service and
entitlements enforced.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Authorisation
This is the standard OAuth Assertions Framework approach as described in the
OAuth 2.0 standards (RFC 7521). Authorization is implemented internally to an
Entity as there is no use of a login service that issues a session token containing
authorized details. Identity (Authentication) is all that’s required to verify and
secure communications between two Entities and it is up to the fulfilment of these
requests to determine whether or not the client is authorised to do so.

However in the case of two-factor authentication where an Entity needs to verify
that the transaction truly originated from a real Customer, then a token directly
from the Customer such as a one-time-password (OTP) needs to accompany the
request. The verification of the OTP therefore authorises the calling Entity to act
on behalf of the Customer. To ensure the OTP is not tampered with, it is part of
the Bearer token JWT. See the next section Identity Assertion for a deeper look
into the JWT.

Identity Assertion
Identity Assertion comes in the form of an on-behalf-of (“obo”) claim in a JSON
Web Token (JWT), which is presented as a Bearer token with the request.
Typically this will be part of the request header, which in the case of an HTTPS
transport, the “Authorization” HTTP header. Other transports (such as a
WebSocket, or an Event Bus) also have a similar header concept in the message
and can all share the same Bearer token as a JWT concept. A JWT is digitally
signed and verified by the RSA key pair (private and public key respectively) that
is shared during onboarding.

The agreed claims in the JWT may differ from each Entity, however a sample set
of claims may include:

Claim Claim Name Example Description

kid Key Identifier 2022_key Optional header claim. Alias of the public key when
multiple may exist (for example during key swaps).

sub Subject P12345678 The Profile ID that determines the entitlements.

aud Audience ENTITY_B The identifier of the system being called that can accept
the request.

obo On-Behalf-Of CUST12345 Optional. The client’s Customer ID.

uid On-Behalf-Of User ID user@customer.com Optional. The client’s User ID.

mailto:user@customer.com

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

nbf Not Before 16679600030 Epoc when the JWT becomes valid.

iat Issued At 16679600030 Epoc when the JWT was generated.

exp Expiration Time 16679600090 * Epoc when the JWT will expire.

jti JWT ID 3159a01e-4c56-4b58-
97c2-58f2021631ca

A client-generated unique identifier for the request.
Supplied in the response.

sk Secret Key <base64 string> Required if payload is encrypted. RSA encrypted secret
key encoded into Base64.

iv IV <base64 string> Required if payload is encrypted. Initial Vector for the
encryption.

otp One-Time Password 123456 Required if the API requires two-factor authentication.

* Entities will ensure the duration of a JWT is not longer than a short period of time
(say one minute). Therefore the difference in time between “exp” and “nbf” (or
“iat” if “nbf” is not specified) does not exceed 60 seconds.

As for the actual entitlements that an Entity will grant another, these can remain
internal.

Process Flow (Identity Assertion)

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Process Steps (Identity Assertion)

1. Entity A builds a JWT and specifies the alias of the RSA key in the “kid”
Header Claim. The JWT is digitally signed by the RSA private key.

2. Entity A sends a request to Entity B (Bank) with the JWT added as a Bearer
Token in the message header. For HTTP, this is in the “Authentication”
HTTP Header.

3. Entity B (Bank) will resolve the key ring for Entity A using the Subject Claim
(“sub”) in the JWT body.

4. Entity B (Bank) will resolve the RSA Public key from Entity A’s key ring using
the Principal from the X.509 certificate used to initiate the mTLS
connection.

5. Entity B (Bank) will verify the digital signature of the JWT using the RSA
Public Key.

6. Entity B (Bank) asserts the JWT claims into the Servlet Attribute so that
identity and other preferences can be extracted by an API service and
entitlements enforced.

Customer Consent
When an Entity is acting on-behalf-of the Customer (B2B2B), there may be certain
transactions that require the explicit consent of the Customer. This can be
achieved using the Authorization Framework as described in the OAuth 2.0
standards (RFC 6749). There are two options available: With Session/Refresh
Tokens or No Tokens.

Session/Refresh Tokens

Session/Refresh tokens are what Entity A can use to act on-behalf-of a Customer.
They are passed directly from Entity B (Bank) to Entity A upon authentication of
the Customer, as an added layer of security. The Session token is used in each
API call, whereas the Refresh token is used to obtain a new Session token that has
(or is close to) expiring. Session tokens are typically short-lived, whereas a Refresh
token is long-lived. The Customer or Entity B (Bank) can at any time can revoke
access by deleting/expiring the tokens in Entity B (Bank).

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Process Flow (Session/Refresh Tokens)

Process Steps (Session/Refresh Tokens)

1. Customer User initiates a request via Entity A’s UI.
2. Entity A initiates a request to Entity B (Bank) on-behalf-of Customer User.
3. Entity B (Bank) determines no consent (Access Token) exists for Customer

User, so replies with a new Consent ID associated with the request and a
Redirect URL for the Customer User to visit.

4. Entity A replies to the Customer User, instructing a redirect to Entity B
(Bank)’s Redirect URL with the Consent ID as a parameter.

5. Customer User follows the Redirect URL + Consent ID to Entity B’s (Bank)
portal (with the return URL to Entity A as a parameter).

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

6. Entity B (Bank) authenticates Customer User (eg: Login, 2FA, etc).
7. Entity B (Bank) generates and records a set of Access and Refresh tokens

for Entity A to act on-behalf-of the Customer User.
8. Entity B (Bank) calls Entity A’s API, informing them of the consent given with

the tokens included.
9. Entity A stores the Access and Refresh tokens against the Customer User’s

profile.
10. Entity B (Bank) replies to Customer User, providing a Redirect URL back to

Entity A’s service.
11. Customer User retries the request that was done in Step 1.
12. Entity A retries the request to Entity B (Bank), this time with the Access

token.
13. Entity B (Bank) verifies the Access token is valid

a. Yes, is valid:
i. Entity B (Bank) fulfils the request and returns the result back to

Entity A, which in turn returns a result back to the Customer
User.

b. No, is invalid (steps shown in red):
i. Entity A requests Entity B (Bank) to refresh the tokens using the

Refresh token.
ii. Entity B (Bank) verifies the Refresh token and issues a new

Access and Refresh Token. If Refresh token is invalid, Entity A
is denied access.

iii. Entity B (Bank) returns new Access and Refresh tokens.
iv. Entity A repeats the initiate request with the Access token

(step 12).

Process Steps (Entity A’s Token Refresh Service)

Optional scheduled process to keep all access tokens valid (steps shown in
orange).

1. Entity A cycles through all stored Refresh tokens for active Customer Users
and for-each:

a. Entity A calls Entity B’s (Bank) token refresh API.
b. Entity B (Bank) verifies Refresh token and issues a new set of Access

and Refresh tokens.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

No Tokens

No Tokens follows the same Session/Refresh token approach, but it is simplified in
that no tokens are needed. Therefore Entity A requires no API endpoint to receive
tokens from Entity B (Bank) and Entity A requires no storage or token refresh
capability. The consent is remembered by Entity B (Bank) and the Customer User
or Entity B (Bank) can still at any time can revoke access by deleting/expiring the
consent record in Entity B (Bank).

Process Flow (No Tokens)

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Process Steps (No Tokens)

1. Customer User initiates a request via Entity A’s UI.
2. Entity A initiates a request to Entity B (Bank) on-behalf-of Customer User.
3. Entity B (Bank) determines no consent record exists for Customer User, so

replies with a new Consent ID for that Customer User’s request and a
Redirect URL for the Customer User to visit.

4. Entity A replies to the Customer User, instructing a redirect to Entity B
(Bank)’s Redirect URL + Consent ID, with a return URL to Entity A as a
parameter.

5. Customer User follows the Redirect URL + Consent ID to Entity B’s (Bank)
portal.

6. Entity B (Bank) authenticates Customer User (eg: Login, 2FA, etc).
7. Entity B (Bank) stores the consent for Entity A to act on-behalf-of Customer

User for a pre-determined time.
8. Entity B (Bank) replies to Customer User, providing a Redirect URL back to

Entity A’s service.
9. Customer User retries the request that was done in step 1.
10. Entity A retires the request that was done in step 2.
11. Entity B (Bank) verifies the consent is active

a. Yes, is valid:
i. Entity B (Bank) fulfils the request and returns the result back to

Entity A, which in turn returns a result back to the Customer
User.

b. No, is invalid:
i. Entity B (Bank) repeats the request to redirect the Customer

User (step 3)

API Request/Response

TLS-only

A TLS-only request uses the JWT verify process as the AuthN. Key differences
between TLS and mTLS are highlighted in bold in the process steps.

For a sender (Entity A) an API call requires the use of the following components:

1. Secret Key
Uniquely generated using the AES algorithm that is used for encrypting and
decrypting the request and response payloads respectively.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

2. RSA Private Key
Used to sign the JWT that contains details we want to ensure isn’t
tampered with.

3. Recipient’s RSA Public Key
Used to encrypt the Secret Key above.

For a recipient (Entity B) an API call requires the use of the following components:

1. Sender’s RSA Public Key
Used to verify the JWT digital signature, so that the contents can be
trusted.

2. RSA Private Key
Used to decrypt the Secret Key sent in the header (or JWT) of the request.

For details on the encryption/decryption of the payload, see Payload Encryption
below.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Process Flow (API over TLS)

Process Steps

1. Entity A generates an AES Secret Key (key size of 256).
2. Entity A RSA encrypts the Secret Key using the recipient’s (Entity B) Public

Key.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

3. Entity A generates a 12-byte random Initial Vector (IV).
4. Entity A prepares the encrypted Secret Key and IV as a request header (or

JWT claim).
5. Entity A builds the JWT and includes Entity A’s Customer ID into the on-

behalf-of (“obo”) claim of the JWT.
6. Entity A digitally signs the JWT using their own Private Key.
7. Entity A encrypts the payload using the “AES/GCM/NoPadding”

transformation, Secret Key and the IV.
8. Entity A initiates a TLS connection to Entity B.
9. Entity B accepts the TLS connection from Entity A.
10. Entity B verifies the digital signature on the JWT using Entity A’s Public Key

(ie- Authentication).
11. Entity B determines Entity B’s Customer ID that the transaction is on behalf

of by looking up the mapping of Entity A’s Customer ID to Entity B’s
Customer ID, where Entity A’s Customer ID is in the on-behalf-of (“obo”)
claim in the JWT.

12. Entity B RSA decrypts the Secret Key using their own Private Key.
13. Entity B processes the request and decrypts the payload using the AES

Secret Key.
14. Entity B encrypts the response using the same AES Secret Key.
15. Entity A decrypts the response using the same AES Secret Key.

Mutual Authentication (mTLS)

An mTLS request uses the client certificate as the AuthN. Key differences
between TLS and mTLS are highlighted in bold in the process steps.

For a sender (Entity A) an API call requires the use of the following components:

1. Certificate
Created by the recipient’s certificate authority to initiate a mutual TLS
connection between both Entities, along with the original RSA private key
used to generate the original certificate request.

2. Secret Key
Uniquely generated using the AES algorithm that is used for encrypting and
decrypting the request and response payloads respectively.

3. RSA Private Key
Used to sign the JWT that contains details we want to ensure isn’t
tampered with.

4. Recipient’s RSA Public Key
Used to encrypt the Secret Key above.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

For a recipient (Entity B) an API call requires the use of the following components:

1. Signing Certificate
Root or intermediate certificate used to generate certificates from
certificate requests.

2. Sender’s RSA Public Key
Used to verify the JWT digital signature, so that the contents can be
trusted.

3. RSA Private Key
Used to decrypt the Secret Key sent in the header (or JWT) of the request.

For details on the encryption/decryption of the payload, see Payload Encryption
below.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Process Flow (API over mTLS)

Process Steps (API over mTLS)

1. Entity A generates an AES Secret Key (key size of 256).

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

2. Entity A RSA encrypts the Secret Key using the recipient’s (Entity B) Public
Key.

3. Entity A generates a 12-byte random Initial Vector (IV).
4. Entity A prepares the encrypted Secret Key and IV as a request header (or

JWT claim).
5. Entity A builds the JWT and includes Entity A’s Customer ID into the on-

behalf-of (“obo”) claim of the JWT.
6. Entity A digitally signs the JWT using their own Private Key.
7. Entity A encrypts the payload using the “AES/GCM/NoPadding”

transformation, Secret Key and the IV.
8. Entity A initiates an mTLS connection to Entity B using the certificate signed

by Entity B’s certificate authority.
9. Entity B verifies the mTLS connection by ensuring Entity A’s certificate

came from their own Signing Certificate (ie- Authentication).
10. Entity B verifies the digital signature on the JWT using Entity A’s Public Key.
11. Entity B determines Entity B’s Customer ID that the transaction is on behalf

of by looking up the mapping of Entity A’s Customer ID to Entity B’s
Customer ID, where Entity A’s Customer ID is in the on-behalf-of (“obo”)
claim in the JWT.

12. Entity B RSA decrypts the Secret Key using their own Private Key.
13. Entity B processes the request and decrypts the payload using the AES

Secret Key.
14. Entity B encrypts the response using the same AES Secret Key.
15. Entity A decrypts the response using the same AES Secret Key.

Security Requirements
1. All communication must be over a secure socket TLS v1.2 (or higher).
2. It is preferred to authenticate using mTLS (client-side certificate), however

a Bearer token (JWT) that is digitally signed by a private key is an
acceptable alternative.

3. Message bodies containing sensitive information should be encrypted
using an AES Secret Key.

4. Message headers containing sensitive information should be encrypted
using RSA (eg: the secret key used to encrypt the message body).

5. The AES Secret Key must be unique for each encrypted request and the
synchronous encrypted response can use the same AES Secret Key,
however asynchronous encrypted responses must use their own unique
AES Secret Key.

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

6. All private keys must be stored outside of the application in a secure vault
(eg: HSM).

7. Certificates and public keys are not required to be contained in a secure
vault.

8. Key Pairs and Certificates must not have a validity of more than one (1)
year.

9. Intermediate and root signing certificates are safe to have long term
validity.

10. When a message payload is a document (or contains a document), it must
be virus scanned as part of the inbound refinery process of the content
repository or just before the document is persisted for further use. When a
document is a multi-file archive (eg: ZIP), each document inside must be
scanned individually.

Appendix

Sample Code

The following is a simple Java program that does the following:

1. Loads server public key from “server_test_key_public.pem” file.
2. Loads and parses client private key from “client_test_key_pcks8.pem” file.
3. Generates a Secret Key using the AES algorithm.
4. Encrypts the Secret Key using the RSA algorithm and server’s public key.
5. Generates a random 12-byte Initialisation Vector for GCM cipher.
6. Loads the payload from the “payload.json” file.
7. Encrypts the payload using the "AES/GCM/NoPadding" transformation,

Secret Key and IV.
8. Generate a JWT that expires in one-minute that contains the Encrypted

Secret Key, IV, the algorithms/transformations used, the asserted identity,
on-behalf-of details, etc.

9. Digitally sign the JWT using the client private key and the RSA 256
algorithm.

10. POST a HTTP request to “https://localhost:8080/context-root/some-api".
11. If the response code is OK (200), then decrypt the response using the same

Secret Key and IVand save the payload to “response.json”.

https://localhost:8080/context-root/some-api

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

Test.java
package com.test;

import io.jsonwebtoken.Jwts;
import io.jsonwebtoken.SignatureAlgorithm;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.URI;
import java.net.http.HttpClient;
import java.net.http.HttpRequest;
import java.net.http.HttpResponse;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.security.Key;
import java.security.KeyFactory;
import java.security.SecureRandom;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.time.Duration;
import java.time.Instant;
import java.time.temporal.ChronoUnit;
import java.util.Base64;
import java.util.Date;
import java.util.Locale;
import java.util.UUID;
import javax.crypto.Cipher;
import javax.crypto.CipherInputStream;
import javax.crypto.CipherOutputStream;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.GCMParameterSpec;

public class Test {

 private static final String PAYLOAD_TRANSFORMATION = "AES/GCM/NoPadding";
 private static final String SECRET_KEY_ALGORITHM = "AES";
 private static final String SECRET_KEY_TRANSFORMATION = "RSA";
 private static final SignatureAlgorithm JWT_SIGNING_ALGORITHM = SignatureAlgorithm.RS256;

 public static void main(String[] args) throws Exception {

 // Load recipient public key from a file
 X509EncodedKeySpec recipientPublicKeySpec = new X509EncodedKeySpec(
 Files.readAllBytes(Paths.get("server_test_key_public.pem"))
);
 KeyFactory recipientKeyFactory = KeyFactory.getInstance("RSA");
 Key recipientPublicKey = recipientKeyFactory.generatePublic(recipientPublicKeySpec);

 // Load client private key from a file
 StringBuilder privateKeyContent = new StringBuilder();
 for (String line : Files.readAllLines(Paths.get("client_test_key_pcks8.pem")))
 if ((line.length() > 0) && (!(line.startsWith("-----"))))
 privateKeyContent.append(line);
 PKCS8EncodedKeySpec myPrivateKeySpec = new PKCS8EncodedKeySpec(
 Base64.getDecoder().decode(privateKeyContent.toString())
);
 KeyFactory myKeyFactory = KeyFactory.getInstance(SECRET_KEY_TRANSFORMATION);
 Key myPrivateKey = myKeyFactory.generatePrivate(myPrivateKeySpec);

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

 // Generate a secret key to be used to encrypt the payload
 KeyGenerator keyGenerator = KeyGenerator.getInstance(SECRET_KEY_ALGORITHM);
 keyGenerator.init(256);
 SecretKey secretKey = keyGenerator.generateKey();

 // Encrypt the secret key using the recipient public key
 Cipher secretKeyEncryptionCipher = Cipher.getInstance(SECRET_KEY_TRANSFORMATION);
 secretKeyEncryptionCipher.init(Cipher.ENCRYPT_MODE, recipientPublicKey);
 String encryptedSecretKey = Base64.getEncoder().encodeToString(
 secretKeyEncryptionCipher.doFinal(secretKey.getEncoded())
);

 // Generate a random Initial Vector
 byte[] iv = new byte[12];
 (new SecureRandom()).nextBytes(iv);
 String ivString = Base64.getEncoder().encodeToString(iv);

 // The payload raw input stream
 InputStream payloadIn = Files.newInputStream(Paths.get("payload.json"));

 // Wrap the request input stream with an encryption stream
 Cipher payloadEncryptionCipher = Cipher.getInstance(PAYLOAD_TRANSFORMATION);
 payloadEncryptionCipher.init(Cipher.ENCRYPT_MODE, secretKey, new GCMParameterSpec(
 128, iv)
);
 CipherInputStream encryptedIn = new CipherInputStream(
 payloadIn, payloadEncryptionCipher
);

 // Unique identify for the transaction.
 String myClientId = UUID.randomUUID().toString();

 // Issued time (with expiry being one-minute after)
 Instant now = Instant.now();

 // Create the JWT
 String jwtTokenString = Jwts.builder()
 .setSubject("P0000123456")
 .setAudience("ENTITY_B")
 .setId(myClientId)
 .setIssuedAt(Date.from(now))
 .setExpiration(Date.from(now.plus(1L, ChronoUnit.MINUTES)))
 .claim("obo", "CUST_1234")
 .claim("uid", "CUST_USER_456")
 .claim("otp", "123456") // one-time password
 .claim("iv", ivString)
 .claim("tf", PAYLOAD_TRANSFORMATION)
 .claim("sk", encryptedSecretKey)
 .claim("ska", SECRET_KEY_ALGORITHM)
 .claim("skt", SECRET_KEY_TRANSFORMATION)
 .claim("loc", Locale.getDefault().toString())
 .claim("ver", "1")
 .signWith(myPrivateKey, JWT_SIGNING_ALGORITHM)
 .setHeaderParam("kid", "client_test_key_public")
 //.compressWith(CompressionCodecs.GZIP)
 .compact()
 ;

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

 System.out.println("JWT=" + jwtTokenString);

 // Submit the request
 HttpClient httpClient = HttpClient.newHttpClient();
 HttpRequest httpRequest = HttpRequest.newBuilder(
 URI.create("https://localhost:8080/context-root/some-api"))
 .POST(HttpRequest.BodyPublishers.ofInputStream(() -> encryptedIn))
 .timeout(Duration.ofSeconds(60))
 .header("Authorization", "Bearer " + jwtTokenString)
 .build()
 ;
 encryptedIn.close();
 payloadIn.close();

 // Process the response
 HttpResponse<InputStream> httpResponse = httpClient.send(
 httpRequest, HttpResponse.BodyHandlers.ofInputStream()
);

 // Stream the response to a file if successful
 if (httpResponse.statusCode() == 200) {

 // The response raw output stream
 OutputStream responseOut = Files.newOutputStream(Paths.get("response.json"));

 // Wrap the response output stream with a decryption stream
 Cipher responseDecryptionCipher = Cipher.getInstance(PAYLOAD_TRANSFORMATION);
 responseDecryptionCipher.init(
 Cipher.DECRYPT_MODE, secretKey, new GCMParameterSpec(128, iv)
);
 CipherOutputStream decryptedOut = new CipherOutputStream(
 responseOut, responseDecryptionCipher
);

 // Write the file
 httpResponse.body().transferTo(decryptedOut);
 decryptedOut.close();
 responseOut.close();
 }
 }
}

Key Pair Generation

The following is a walkthrough of how to generate a key pair using “openssl”.

1. Generate a private key

openssl genrsa -des3 -out private.pem 2048

2. Export a public key from the private key

openssl rsa -in private.pem -outform PEM -pubout -out public.pem

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

mTLS (server-side)

The following is a walkthrough of how to setup a Java SpringBoot application to
enforce mTLS. It makes use of “openssl” to generate and sign keys/certificates.

1. Generate a Private Key and Root Certificate Authority that can be used for
signing both the server and client certificates.

openssl req -x509 -sha256 -days 3650 -newkey rsa:4096 \
 -keyout rootCA.key -out rootCA.crt

2. Generate a Private Key and Certificate Request for the server certificate
generation that will run on “localhost”.

openssl req -new -newkey rsa:4096 -keyout localhost.key \
 –out localhost.csr

3. Create a configuration file called “localhost.ext” for signing the “localhost”
certificate that contains the following:

authorityKeyIdentifier=keyid,issuer
basicConstraints=CA:FALSE
subjectAltName = @alt_names
[alt_names]
DNS.1 = localhost

4. Generate the certificate for “localhost” from the Certificate Request and
using the Root Certificate Authority

openssl x509 -req -CA rootCA.crt -CAkey rootCA.key \
 -in localhost.csr -out localhost.crt -days 365 -CAcreateserial \
 -extfile localhost.ext

5. Package the “localhost” certificate and private key into a PKCS12 archive

openssl pkcs12 -export -out localhost.p12 -name "localhost" \
 -inkey localhost.key -in localhost.crt

6. Import the “localhost” package into a JKS keystore, which allows the server
to have TLS.

keytool -importkeystore -srckeystore localhost.p12 \

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

 -srcstoretype PKCS12 -destkeystore keystore.jks -deststoretype JKS

7. Import the Root Certificate Authority certificate into a JKS truststore, which
allows the server to have mTLS.

keytool -import -trustcacerts -noprompt -alias ca \
 -ext san=dns:localhost,ip:127.0.0.1 -file rootCA.crt \
 -keystore truststore.jks

8. Configure the Java SpringBoot service to use the “localhost” certificate for
TLS and the truststore for enforcing mTLS. “server.ssl.client-auth=need” will
enforce mTLS, where as “server.ssl.client-auth=want” will make mTLS
optional.

server.ssl.key-store=keystore.jks
server.ssl.key-store-password=changeit
server.ssl.key-alias=localhost
server.ssl.key-password=changeit
server.ssl.enabled=true
server.ssl.trust-store=truststore.jks
server.ssl.trust-store-password=changeit
server.ssl.client-auth=need

mTLS (client-side)

When using a standard Key Store and Trust Store for a Java client, an mTLS
connection will cause the Key Manager to pick the first certificate it finds in the
Key Store that was signed by the specified issuer. If there happens to be multiple
certificates issued, then choosing the right one is not possible. Also a client may
want to store certificates somewhere other than a regular Key Store, as any
changes to the Key Store would require a restart of the service, which may not be
practical.

The standard approach is to initialise an SSL Context that has a customised Key
Manager and Trust Manager, so that the certificate resolver can be overridden.
The code snippet below shows how to include a custom Key Manager and Trust
Manager into the SSL Context used for an HTTP request:
 // Setup a customised SSL Context
 SSLContext sslContext = SSLContext.getInstsance("TLS");
 sslContext.init(
 new KeyManager[] { myKeyManager }
 , new TrustManager[] { myTrustManager }
 , SecureRandom.getInstanceStrong()
);

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

 // Create a HTTP Client using the custom SSL Context
 HttpClient httpClient = HttpClient.newBuilder().sslContext(sslContext).build();

 // Submit the request
 HttpRequest httpRequest = HttpRequest.newBuilder(
 URI.create("https://localhost:8080/context-root/some-api"))
 .POST(HttpRequest.BodyPublishers.ofInputStream(() -> encryptedIn))
 .timeout(Duration.ofSeconds(60))
 .header("Authorization", "Bearer " + jwtTokenString)
 .build()
 ;

 International Chamber of Commerce
 Banking Commission APIs working group Briefing n°1

About the International Chamber of Commerce

The International Chamber of Commerce (ICC) is the institutional representative of
more than 45 million companies in over 100 countries. ICC’s core mission is to make
business work for everyone, every day, everywhere. Through a unique mix of
advocacy, solutions and standard setting, we promote international trade,
responsible business conduct and a global approach to regulation, in addition to
providing market-leading dispute resolution services. Our members include many
of the world’s leading companies, SMEs, business associations and local chambers
of commerce.

	Overview
	Onboarding
	Direct Onboarding
	mTLS Onboarding
	Process Flow (mTLS Onboarding)
	Process Steps (mTLS Onboarding)

	Key Exchange Onboarding
	Process Flow (Key Exchange Onboarding)
	Process Steps (Key Exchange Onboarding)
	Key Pair Usage
	Encryption/Decryption
	Signing/Verifying

	Indirect Onboarding
	Customer Onboarding
	Process Flow (Customer Onboarding)
	Process Steps (Customer Onboarding)

	User Onboarding
	Process Flow (User Onboarding)
	Process Steps (User Onboarding)

	Authentication
	Mutual Transport Layer Security
	Process Flow (mTLS)
	Process Steps (mTLS)

	Bearer Token
	Process Flow (JWT Bearer Token)
	Process Steps (JWT Bearer Token)

	Authorisation
	Identity Assertion
	Process Flow (Identity Assertion)
	Process Steps (Identity Assertion)

	Customer Consent
	Session/Refresh Tokens
	Process Flow (Session/Refresh Tokens)
	Process Steps (Session/Refresh Tokens)
	Process Steps (Entity A’s Token Refresh Service)

	No Tokens
	Process Flow (No Tokens)
	Process Steps (No Tokens)

	API Request/Response
	TLS-only
	Process Flow (API over TLS)
	Process Steps

	Mutual Authentication (mTLS)
	Process Flow (API over mTLS)
	Process Steps (API over mTLS)

	Security Requirements
	Appendix
	Sample Code
	Test.java
	Key Pair Generation
	mTLS (server-side)
	mTLS (client-side)

